A Riesz basis criterion for Schrödinger operators with boundary conditions dependent on the eigenvalue parameter

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

Eigenvalue Problems for One-Dimensional Discrete Schrödinger Operators with Symmetric Boundary Conditions

In this paper, we investigate the one-dimensional discrete Schrödinger equation with general, symmetric boundary conditions. Our results primarily concern the number of energy states lying in the wells.

متن کامل

Spectral Properties of the Differential Operators of the Fourth-Order with Eigenvalue Parameter Dependent Boundary Condition

Copyright q 2012 Z. S. Aliyev and N. B. Kerimov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider the fourth-order spectral problem y 4 x − q x y′ x ′ λy x , x ∈ 0, l with spectral parameter in the boundary condition. W...

متن کامل

Nonclassical Eigenvalue Asymptotics for Operators of Schrödinger

which depends on the volume u)n of the unit sphere in R n and the beta function. Assuming /3 < 2 we see that integral (2) becomes divergent if V (x) vanishes to a sufficiently high order. The simplest such potential is V(x,y) = \x\\y\P o n R n + R m . The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator — A-hV(x), fails to predict discrete spectrum below ...

متن کامل

On the eigenvalue problems for differential operators with coupled boundary conditions

The present paper deals with the eigenvalue problems for oneand two-dimensional second order differential operators with given nonlocal coupled boundary conditions. The corresponding finite-difference (discrete) problems have been investigated in the paper [1]. First of all, we will consider the eigenvalue problem for one-dimensional differential operator with given nonlocal coupled boundary co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Mathematical Physics

سال: 2019

ISSN: 1664-2368,1664-235X

DOI: 10.1007/s13324-019-00348-0